

ENVIRONMENTAL TEST EFFECTIVENESS*

TOM E. GINDORF

MARK GIBBEL

^{*} Previously presented at the 15th Aerospace Testing Seminar (October, 1994)

TAILORING AND TEST EFFECTIVENESS

TOIL ORING AND TAST AFFACTIVANDSS

- NAS® COD € Q SPON SCREB EFFORT
- GOAL
- PROVID® A TECHNICAL BDSIS FOR TEST TAILOR NG TO MPROVE TSST &FF&CTIV®™ SS WITH FBC ORIENTATION
- ESTABLISH A TEMPLATE FOR FURTHER ANALYSIS WHEN ADDITI⊂N∞L DATA IS AVA!LABLE, e.g. SS≉D
- PAPER IS OVERVIEW OF EFFECTIVENESS REPORTS RELEASED IN DATE
- FUL'S REPORT -- LIV NG DCCUMENT -- AVAILABLE AFTER SESSION

TETASTATUS

SIGNIFICANT TREND REPORTS RELEASED TO DATE

	TETA-TO-0001 Rev A	POWERED-ON ASSEMBLY VIBRATION TESTING ON THE VOYAGER AND GALILEO PROGRAMS
	TETA-TO-0002	COMPARISON OF JPL PROCURED FLIGHT HARDWARE WITH $SYSTEM$ CONTRACTOR PROCURED FLIGHT HARDWARE .
→	TETA-TO-0003	ENVIRONMENTAL TEST EFFECTIVENESS AS INDICATED BY VOYAGER AND GALILEO ANOMALIES
	TETA-TO-0004	COMPARISON OF VOYAGER AND GALILEO PROBLEM/FAILURES ON ELECTRICAL AND ELECTRONIC SUBSYSTEMS
→	TETA-TO-0005	EMC TESTING SIGNIFICANCE
→	TETA-TO-0006	EFFECTIVENESS OF GALILEO ASSEMBLY LEVEL DYNAMIC TESTS
	TETA-TO-0007	RELATIONSHIP OF DESIGN CHANGES AND WAIVED REQUIREMENTS TO DESIGN MATURITY
→	TETA-TO-0008	PROBLEMFAILURE CAUSE
→	TETA-TO-0009	TEST EFFECTIVENESS AND RELIABILITY GROWTH IN JPL PROGRAMS
	TETA-TO-0010	CAUSES OF ANOMALIES DURING THERMAL-VACUUM TESTS
→	TETA-TO-0011	EFFECTIVENESS OF VACUUM ENVIRONMENT IN THE THERMAL-VACUUM TEST

TETA STATUS (Continued)

1

1

TETA-TO-0001, Rev. A

POWERED-ON ASSEMBLY VIBRATION TESTING ON THE VOYAGER AND GALILEO PROGRAMS

ISSUES

IS POWERED-ON VIBRATION NECESSARY/USEFUL.

Conclusion

POWER ON IS A NECESSARY CONDITION DURING VI BRATION TESTING TO UNCOVER ELECTRICAL PROBLEMS.

SIGNIFICANCE OF PROBLEM FAILURES UNCOVERED BY POWER-ON VIBRATION

	Voyager	Galileo
Total Vibration PFR's	84	20
Number of problems/failures attributed to power-on vibration which are not believed to be otherwise detectable.	44	14
Number of problems detected by powered-on vibration requiring redesign/rework and which if undetected would have had major mission impact.	3	1

SUMMARY OF POWER-ON VIBRATION RESULTS

	Voyager	Galileo
Percentage of Problems Requiring Powered-On Vibration for Detection	52% (44/84)	70% (14/20)
Percentage Of Detected Problems Which Have Major Mission Consequence In The Absence Of Redesign/Rework.	7% (3/44)	7% (1/14)

ENVIRONMENTAL TEST EFFECTIVENESS AS INDICATED BY VOYAGER AND GALILEO ANOMALIES

ISSUE

WHICH ENVIRONMENTAL TEST ARE MOST EFFECTIVE IN FINDING PROBLEMS?

CONCLUSIONS

ON AVERAGE, THERMAL VACUUM TESTS ARE -200% MORE EFFECTIVE AT THE ASSEMBLY LEVEL AND -7500/0 MORE EFFECTIVE AT THE SYSTEM LEVEL THAN VIBRATION TESTING. EMC TEST EFFECTIVNESS IS SIMILAR TO VIBRATION IN DETECTING PROBLEMS.

ASSY		SYSTEM
RATIO		RATIO
<u>TN PFRS</u>		<u>TN PFRS</u>
VIB PFRS		VIB PFRS
VOYAGER	1.3	8
GAULEO	3.0	7
AVERAGE	-2.1	-7.5

•LINES REPRESENT CUMULATIVE ANOMALIES AS TESTS PROGRESS

EMC TESTING SIGNIFICANCE

ASSEM∃LY-LEV≼L P/FS VS T≷ST ≶NVIRONM≼NT

EFFECTIVENESS OF GALILEO ASSEMBLY LEVEL DYNAMICS TESTING

ISSUES

WHICH DYNAMICS TESTING WAS MOST EFFECTIVE IN FINDING PROBLEMS?

CONCLUSIONS

SINE TESTING IS THE MOST PERCEPTIVE ASSEMBLY LEVEL DYNAMICS TEST*.

TOTAL GLL DYN TESTS	TOTAL PROBLEMS FAILURES	%0 SINE*	% <u>RANDOM*</u>	% ACOUSTIC	% <u>SHOCK</u>
252	66	~68%	~27%	~3%	~1.5%
	QUAL SINE % RANDOI 70/0 25%	W	% SINE 69%	% RANDOM 31%	

MOST PERCEPTIVE AS WORKMANSHIP SCREEN

[●] SINE TEST CAN BE AN OVERTEST IF NOT CAREFULLY ADMINISTERED. EXCESSIVE CYCLES CAN BUILD AT RESONANT FREQUENCIES IN NON-FLIGHT MANNER.

"*UNCERTAIN P/F (28) ARE PROPORTIONALLY DISTRIBUTED BETWEEN RANDOM AND SINE TESTS.

TABLE 2. DYNAMIC TEST FAILURES WITH DISTRIBUTED UNKNOWN TEST ENVIRONMENT

Test Env.		Total Tests		Failures			Yield	
	Quail PF	FA	Total	Quail PF	FA	Total	Relative To All Tests	Relative to Specific Env.
1. Random Vib.	66	46	112	10.4	7.7	18	7.1%	16.1%
2. Sine Vib.	66	46	112	27.6	17.3	45	17.9?/0	40.2%
3. Sine or Random					Dist			
4. Shock	14	0	14	1		1 1	0.4%	7%
5. Acoustic	14	0	14	2		۱ 2	0.8%	14%
1 Total	160	92	252	41	25	66	26.2?/.	1

Table 2. provided below, was developed by distributing the failures attributed to "sine or random" vibration to each of the sine and random vibration environments porportionally.

PROBLEMFAILURE CAUSE

ISSUE

WHAT ARE THE PRINCIPAL CAUSES OF TEST PROBLEM/FAILURES ON JPL HARDWARE?

CONCLUSION

DESIGN PROBLEMS REPRESENT -600/0 OF THE PROBLEMSIFAILURES REVEALED DURING TESTING, WHILE PARTS RELATED PROBLEMS ARE THE CAUSE~12% THE LIMERY CONTRAST TO TIROS-NOAA, DESIGN CAUSESWERE~32%, WHILEPARTSCAUSESWERE~28% FORS/CBUILTBY A MAJOR SYSTEM CONTRACTOR.

MAY SUGGEST SIGNIFICANT DIFFERENCES IN THE PART PROGRAM.

ASSEM∃LY-LEV≼L P/FS ∃Y CDUSE

SYST≤M-LEVEL P/FS ∃Y CDUSE

MAN./WORK. | PARTS

DESIGN

P/F CAUSES FOR TDR DATA BASE

BY PERCENT

TEST EFFECTIVENESS AND RELIABILITY GROWTH IN JPL PROGRAMS

ISSUE

HAS ASSEMBLY TEST EFFECTIVENESS IMPROVED AND RELIABILITY GROWTH OCCURRED ON JPL PROGRAMS?

CONCLUSION

SIGNIFICANTLY IMPROVED ASSEMBLY TEST EFFECTIVENESS AND RELIABILITY GROWTH HAS OCCURRED OVER THE LAST 20 YEARS.

DATIO OF

	RATIO OF
	FLIGHT PFRS
	TO ASSY PFRS
MARINER (1969)	~.55
MARINER (1971)	45
VIKING (1975)	03
VOYAGER ('1977)	02
GALILEO (1989)	05

Effectiveness of Test Program and Reliability Growth as a Function Time (As of 4/1 5/92)

- * Flight Anomalies normalized by S/C years
- •Test Anomalies normalized by no. of hardware sets undergoing hardware testing

EFFECTIVENESS OF VACUUM ENVIRONMENT IN THE THERMAL-VACUUM TEST

ISSUE

IS VACUUM NECESSARY FOR A THERMAL TEST TO **BE** EFFECTIVE?

CONCLUSION

VACUUM DURING TESTING OF ELECTRONIC HARDWARE IS A SIGNIFICANT FACTOR IN THE EFFECTIVENESS OF THE THERMAL TEST BECAUSE THE RELATIONSHIP TO INDIVIDUAL PART /JUNCTION TEMPERATURES AND PERFORMANCE PARAMETERS.

A VACUUM ENVIRONMENT CANALSO BE A !MPORTANT FACTOR IN UNCOVERING PROBLEMS NOT INFLUENCED BY TEMPERATURE PER SE.

TABLE 1. ASSEMBLY-LEVEL TV TEST

PROGRAM	VOY	AGER	GALILEO		
DEPENDENCY	NUMBER	PERCENT	NUMBER	PERCENT	
Number where temperature only required	9	19.6	7	19.4	
Number where temperature & vacuum both required due to influence of vacuum on temperature	10	21.7	17	47.2	
Number where vacuum alone required	21	45.7	8	22.2	
Number where dependency was undetermined	4.	8.7	3	8.3	
Number where none of the specified environments was required.	2	4.3	1	2.8	
TOTALS	46	100	36	100	

TABLE 2. SYSTEM-LEVEL **TV** TEST

PROGRAM	VOYAGER		GAL	ILEO
DEPENDENCY	NUMBER	PERCENT	NUMBER	PERCENT
Number where temperature only required	0	0	4	10.3
Number where temperature & vacuum both required due to influence of vacuum on temperature	6	13	5	12.8
Number where vacuum alone required	29	63	14	35.9
Number where dependency was undetermined	2	4.3	2	5.1
Number where none of the specified environments was required.	9	19.6	1 4	35.9
TOTALS	46	100	39	100

ADEQUACY OF PRELAUNCH TESTING BASED ON EARLY FLIGHT ANOMALIES

ISSUE

INFERENCE OF THE CORRELATION OF RATED PRELAUNCH PROBLEM/FAILURE TO THE RATE DURING THE EARLY PART OF S/C FLIGHT ON PRELAUNCH TEST ADEQUACY.

CONCLUSION

ON THREE OF FOUR JPL FLIGHT PROGRAMS THE INFLIGHT PROBLEM/FAILLIRF RATE IMMEDIATELY AFTER LAUNCH IS SIMILAR TO THE RATE DURING PRELAUNCH OPERATIONS. ADDITIONAL GROUND FUNCTIONAL TESTING WOULD LIKELY REDUCE EARLY FLIGHT PROBLEMS. HO

RSGDESSION OF DNOMALIES VS TIME

T. GINOO XF 10/94 - 21

EFFECTIVENESS OF GALILEO ASSEMBLY LEVEL DYNAMICS TEST VERSUS NUMBER OF AXES TESTED

ISSUE

RELATIVE EFFECTIVENESS OF ASSEMBLY LEVEL DYNAMICS TESTS VERSUS THE NUMBER OF AXES TESTED?

CONCLUSION

BASED ON GALILEO EXPERIENCE, THE OPTIMUM REQUIRED NUMBER OF AXES IN WHICH ASSEMBLES ARE VIBRATION TESTED TO DETECT POTENTIAL DESIGN/WORKMANSHIP DEFECTS IS TWO; LIMITING TESTING TO ONE AXIS WILL LEAVE MANY SUCH DEFECTS UNDETECTED. THREE AXIS VIBRATION APPEAR UNNECESSARY

TABLE 1 - DYNAMIC ASSEMBLY TEST FAILURES BY KNOWN ORDER OF OCCURENCE

Test Environm vs Type of Failure by		Design	S orkmanship	Ma⊲ufacturing	Total
	1st	3	1	0	4
Sine Vibration	2nd	4	1	2	7
	3rd	0	0	0	0
	1st	1	0	0	1
Random Vibration	2nd	2	0	0	2
	3rd	0	В	0	ŋ
To	otal	10	2	2	14

14 DESIGN, WORKMANSHIP, AND MANUFACTURING DEFECTS WERE DETECTED AFTER TWO AXES OF VIBRATION TESTING

5 WERE DETECTED AFTER THE FIRST AXIS OF VIBRATION

O WERE DETECTED AFTER DURING THE THIRD AXIS OF VIBRATION

*CARE SHOULD BE TAKEN TO SELECT THE MOST SENSITIVE AXIS.